RESP-2210: INTRODUCTION TO MECHANICAL VENTILATION

Cuyahoga Community College

Viewing: RESP-2210: Introduction to Mechanical Ventilation

Board of Trustees:

June 2020

Academic Term:

Fall 2020

Subject Code

RESP - Respiratory Care

Course Number:

2210

Title:

Introduction to Mechanical Ventilation

Catalog Description:

Introduction to mechanical ventilation with special emphasis on ventilator terminology. Covers information necessary to understand basic functions of a life support ventilator.

Credit Hour(s):

1

Lecture Hour(s):

1

Requisites

Prerequisite and Corequisite

Concurrent enrollment in RESP-2940 Respiratory Care Field Experience I.

Outcomes

Course Outcome(s):

Contrast the different characteristics of Type 1 and Type 2 respiratory failure.

Objective(s):

- 1. Define respiratory failure.
- 2. Differentiate between the terms Type-I and Type-II respiratory failure.
- 3. Defend indications for ventilatory support.
- 4. Explain the differences between negative pressure ventilation vs. positive pressure ventilation.
- 5. Apply the goals of mechanical ventilation.

Course Outcome(s):

Categorize characteristics of mechanical ventilation.

Objective(s):

- 1. Differentiate between the terms trigger vs. cycle.
- 2. Describe the following components of a mechanical ventilator: circuits, power source, control panel, trigger/cycle mechanisms, full/partial support, and gas source.
- 3. Compare similarities and differences between modes of ventilation.
- 4. Identify diagrams of waveform tracing depicting various modes of ventilation.

Course Outcome(s):

Initiate mechanical ventilation given patient settings.

Objective(s):

- 1. Set volume, pressure, flow, and time controls given specific patient settings.
- 2. Discuss the patient safety aspects related to proper alarm settings.
- 3. Calculate and set alarms given specific patient settings.
- 4. Calculate tidal volume given a disease state category.

Course Outcome(s):

Assemble a mechanical ventilator given specific settings

Objective(s):

- 1. Assemble mechanical ventilator (circuit and filters).
- 2. Perform safety check.
- 3. Set all controls (mode, flow, tidal volume, rate, sensitivity, ramp, FIO2, PEEP) given a patient scenario.
- 4. Adjust alarms/limits to match settings.
- 5. Identify the indication for mechanical ventilation given a specific patient scenario.

Methods of Evaluation:

- A. Exams
- B. Quizzes
- C. Skills demonstration

Course Content Outline:

- 1. Definitions related to respiratory failure
 - a. Type-I
 - i. Causes
 - ii. Treatments
 - b. Type-II
 - i. Causes
 - ii. Treatments
- 2. Terms related to mechanical ventilation
 - a. Trigger
 - b. Cycle
 - c. Limit
 - d. Volume control
 - e. Pressure control
 - f. Modes
 - g. Positive end expiratory pressure (PEEP)
- 3. Indications to commit to mechanical ventilation
 - a. Physiologic measurements
 - b. Patient assessments
- 4. Methods/Modes of mechanical ventilation
 - a. Negative pressure
 - b. Positive pressure
 - i. Control
 - ii. Assist
 - iii. Assist/control
 - iv. Synchronized intermittent mandatory ventilation
 - v. Continuous Positive Airway Pressure (CPAP),
 - vi. Positive End-Expiratory Pressure (PEEP)
 - vii. Continuous Mandatory Ventilation (CMV),
 - viii. Intermittent Mandatory Ventilation (IMV),
 - ix. Pressure-controlled (PC) modes
- 5. Hands on demonstrations
 - a. Ventilator set-up
 - i. Filters
 - ii. Tubing/circuit
 - b. Set ventilator settings

- i. Alarms
- ii. Tidal volume
- iii. Rate
- iv. Flowrate
- v. Inspired oxygen

Resources

Cairo, JM, et. al. (2017) Respiratory Care Equipment, St. Louis: Mosby Elsevier.

Kacmarek, RM, et. al. (2020) Egan's Fundamentals of Respiratory Care, St. Louis: Elsevier Mosby.

Hess, DR, et.al. (2019) Respiratory Care Principles and Practice, New York: McGraw Hill.

Cairo, JM. (2017) Pilbeam's Mechanical Ventilation: Physiological and Clinical Applications, St. Louis: Mosby Elsevier.

David C Shelledy and Jay I Peters. (2020) Mechanical Ventilation, Burlington, MA: Jones & Bartlett Learning.

Resources Other

http://www.rcjournal.com/cpgs/index.cfm (http://www.rcjournal.com/cpgs/) http://ventworld.com

Top of page Key: 3989