MATH-2010: INTRODUCTION TO DISCRETE MATHEMATICS

Cuyahoga Community College

Viewing: MATH-2010: Introduction to Discrete Mathematics

Board of Trustees:

2007-05-24

Academic Term:

Fall 2020

Subject Code

MATH - Mathematics

Course Number:

2010

Title:

Introduction to Discrete Mathematics

Catalog Description:

Foundation course in discrete mathematics with applications. Topics include logic, methods of proof, elementary number theory, set theory, functions, efficiency of algorithms, and mathematical induction.

Credit Hour(s):

4

Lecture Hour(s):

4

Requisites

Prerequisite and Corequisite

MATH-1530 College Algebra or MATH-153H College Algebra or MATH-1580 Precalculus; or sufficient score on assessment test; or departmental approval: equivalent coursework.

Outcomes

Course Outcome(s):

Apply logical analysis to compound statements.

Objective(s):

- 1. Construct truth tables for compound, conditional, and biconditional statements.
- 2. Apply DeMorgan's Laws.
- 3. Determine the negation, contrapositive, converse, and inverse of a conditional statement.
- 4. Prove or disprove the validity of an argument.
- 5. Recognize and apply the argument forms of modus ponens and modus tollens.

Course Outcome(s):

Apply logical analysis to quantified statements.

Objective(s):

- 1. Prove or disprove the validity of an argument with quantified statements.
- 2. Find the truth set of a predicate.
- 3. Prove the truth or falsity of universal statements and existential statements.
- 4. Determine the negation of universal statements and existential statements.
- 5. Interpret and negate multiply-quantified statements.

Course Outcome(s):

Apply basic methods of proof to elementary number theory.

Objective(s):

- 1. Prove existential statements with constructive proof of existence.
- 2. Disprove universal statements with a counterexample.
- 3. Prove theorems and statements using the methods of direct proof, proof by contradiction, and proof by contraposition.

Course Outcome(s):

Apply basic methods of proof to set theory.

Objective(s):

- 1. Define and apply the basic properties of and operations on sets.
- 2. Recognize and form partitions of sets, power sets, and Cartesian products.
- 3. Prove or disprove subset relations and set identities.
- 4. Define and apply the properties of a Boolean algebra.

Course Outcome(s):

Apply properties of functions to evaluate the efficiency of an algorithm.

Objective(s):

- 1. Graph basic functions in the Cartesian plane, including power functions, functions defined on sets of integers, multiples of functions, increasing and decreasing functions, exponential functions, and logarithmic functions.
- 2. Determine the order of a function using O-, Omega-, and Theta-notations.
- 3. Evaluate the efficiency of an algorithm.

Course Outcome(s):

Apply mathematical induction to prove conjectures about the outcomes of processes.

Objective(s):

- 1. Define and apply the basic properties of sequences.
- 2. Compute and apply properties of summations and products.
- 3. Prove conjectures by mathematical induction and strong mathematical induction.

Course Outcome(s):

Apply methods and ideas learned throughout this course to computer science.

Methods of Evaluation:

- 1. A minimum of 3 periodic exams
- 2. Quizzes
- 3. Homework
- 4. In-class collaborative work
- 5. Computer application problems
- 6. Comprehensive final exam

Course Content Outline:

- 1. Logic
 - a. Truth tables
 - i. Compound statements
 - ii. Conditional and biconditional statements
 - 1. negation
 - 2. contrapositive
 - 3. converse
 - 4. inverse
 - b. DeMorgan"s Laws
 - c. Validity of an argument
 - i. Modus ponens
 - ii. Modus tollens
 - iii. Contradiction rule

- 2. Quantified statements
 - a. Truth set
 - b. Universal statements
 - i. Truth or falsity
 - ii. Negation
 - c. Existential statements
 - i. Truth or falsity
 - ii. Negation
 - d. Multiply-quantified statements
 - i. Truth or falsity
 - ii. Negation
 - e. Arguments with quantified statements
- 3. Number theory and proofs
 - a. Proof of existence
 - b. Counterexample
 - c. Direct proof
 - d. Proof by contradiction
 - e. Proof by contraposition
- 4. Set theory and proofs
 - a. Properties of and operations on sets
 - i. Subset
 - ii. Proper subset
 - iii. Union
 - iv. Intersection
 - v. Difference
 - vi. Complement
 - vii. Partition
 - viii. Power set
 - ix. Cartesian product
 - b. Proofs
 - i. Subset relations
 - ii. Set identities
 - c. Boolean algebras
 - i. Definition
 - ii. Proofs
- 5. Functions and proofs
 - a. Basic functions
 - b. Boolean functions
 - c. One-to-one functions
 - d. Onto functions
 - e. One-to-one correspondences
 - f. Inverse functions
 - g. Composition of functions
- 6. Efficiency of an algorithm
 - a. Graph basic functions
 - i. Power functions
 - ii. Functions defined on sets of integers
 - iii. Multiples of functions
 - iv. Increasing and decreasing functions
 - v. Exponential functions
 - vi. Logarithmic functions
 - b. Order of a function
 - i. O-notation
 - ii. Omega-notation
 - iii. Theta-notation
- 7. Mathematical induction
 - a. Sequences
 - b. Sums and products

- 4 MATH-2010: Introduction to Discrete Mathematics
 - c. Proofs by mathematical induction
 - d. Proofs by strong mathematical induction

Resources

Epp, Susanna S. Discrete Mathematics with Applications. 3rd ed. Belmont, CA: Brooks/Cole-Thomson Learning, 2004.

Rosen, Kenneth H. Discrete Mathematics and Its Applications. 6th ed. New York, NY: McGraw-Hill, 2007.

Lipschutz, Seymour, and Marc Lars Lipson. 2000 Solved Problems in Discrete Mathematics. New York, NY: McGraw-Hill, 1992.

Lipschutz, Seymour, and Marc Lars Lipson. Schaum's Outline of Discrete Mathematics. 2nd ed. New York, NY: McGraw-Hill, 1997.

Haggard, Gary, John Schlipf, and Sue Whitesides. *Discrete Mathematics for Computer Science*. Belmont, CA: Brooks/Cole-Thomson Learning, 2006.

Resources Other

1. Instructor companion website. http://www.thomsonedu.com (http://www.thomsonedu.com/)

Instructional Services

OAN Number:

Ohio Transfer Module TMMSL

Top of page

Key: 2869