MATH-1240: CONTEMPORARY MATHEMATICS

Cuyahoga Community College

Viewing:MATH-1240 : Contemporary Mathematics

Board of Trustees:
2016-03-31

Academic Term:
Spring 2019

Subject Code
MATH - Mathematics

Course Number:
1240

Title:
Contemporary Mathematics

Catalog Description:
Applications of mathematics in contemporary life. Introduction to financial literacy, dimensional analysis as applied to measurement and unit conversions, graph theory, topics in probability and descriptive statistics.

Credit Hour(s):
3

Lecture Hour(s):
3

Requisites

Prerequisite and Corequisite
MATH-0955 Beginning Algebra, or sufficient score on Math assessment test; or departmental approval: equivalent coursework.
Note: MATH-0960 or MATH-0980 taken prior to Fall 2016 will also be accepted to meet prerequisite requirements for this course.

I. ACADEMIC CREDIT

Academic Credit According to the Ohio Department of Higher Education, one (1) semester hour of college credit will be awarded for each lecture hour. Students will be expected to work on out-of-class assignments on a regular basis which, over the length of the course, would normally average two hours of out-of-class study for each hour of formal class activity. For laboratory hours, one (1) credit shall be awarded for a minimum of three laboratory hours in a standard week for which little or no out-of-class study is required since three hours will be in the lab (i.e. Laboratory 03 hours). Whereas, one (1) credit shall be awarded for a minimum of two laboratory hours in a standard week, if supplemented by out-of-class assignments which would normally average one hour of out-of-class study preparing for or following up the laboratory experience (i.e. Laboratory 02 hours). Credit is also awarded for other hours such as directed practice, practicum, cooperative work experience, and field experience. The number of hours required to receive credit is listed under Other Hours on the syllabus. The number of credit hours for lecture, lab and other hours are listed at the beginning of the syllabus. Make sure you can prioritize your time accordingly. Proper planning, prioritization and dedication will enhance your success in this course.
The standard expectation for an online course is that you will spend 3 hours per week for each credit hour.

II. ACCESSIBILITY STATEMENT

If you need any special course adaptations or accommodations because of a documented disability, please notify your instructor within a reasonable length of time, preferably the first week of the term with formal notice of that need (i.e. an official letter from the Student Accessibility Services (SAS) office). Accommodations will not be made retroactively.
For specific information pertaining to ADA accommodation, please contact your campus SAS office or visit online at http://www.tri-c.edu/accessprograms. Blackboard accessibility information is available at http://access.blackboard.com.
Eastern (216) 987-2052 - Voice
Metropolitan (216) 987-4344 – Voice. (216) 987-4048 – TTY.
Western (216) 987-5079 – Voice. (216) 987-5117 – TTY.
III. ATTENDANCE TRACKING

Regular class attendance is expected. Tri-C is required by law to verify the enrollment of students who participate in federal Title IV student aid programs and/or who receive educational benefits through other funding sources. Eligibility for federal student financial aid is based in part on enrollment status.

Students who do not attend classes for the entire term are required to withdraw from the course(s). Additionally, students who withdraw from a course or stop attending class without officially withdrawing may be required to return all or a portion of their financial aid based on the date of last attendance. Students who do not attend the full session are responsible for withdrawing from the course(s).

Tri-C is responsible for identifying students who have not attended a course before financial aid funds can be applied to students’ accounts.

Therefore, attendance is recorded in the following ways:
• For in-person and blended-learning courses, students are required to attend the course by the 15th day of the semester (or equivalent for terms shorter than five weeks) to be considered attending. Students who have not met all attendance requirements for in-person and blended courses, as described herein, within the first two weeks or equivalent, will be considered not attending.
• For online courses, students are required to login at least two times per week and submit one assignment per week for the first two weeks of the semester, or equivalent to the 15th day of the term. Students who have not met all attendance requirements for online courses, as described herein, within the first two weeks or equivalent, will be considered not attending.

At the conclusion of the first two weeks of a semester or equivalent, instructors report any registered students who have “Never Attended” a course. Those students will be administratively withdrawn from that course. However, after the time period in the previous paragraphs, if a student stops attending a class or wants or needs to withdraw, for any reason, it is the student’s responsibility to take action to withdraw from the course. Students must complete and submit the appropriate Tri-C form by the established withdrawal deadline.

Tri-C is required to ensure that students receive financial aid only for courses that they attend and complete. Students reported for not attending at least one of their registered courses will have all financial aid funds held until confirmation of attendance in registered courses has been verified. Students who fail to complete at least one course may be required to repay all or a portion of their federal financial aid funds and may be ineligible to receive future federal financial aid awards. Students who withdraw from classes prior to completing more than 60 percent of their enrolled class time may be subject to the required federal refund policy.

If illness or emergency should necessitate a brief absence from class, students should confer with instructors upon their return. Students having problems with coursework due to a prolonged absence should confer with the instructor or a counselor.

IV. LEARNING OUTCOMES ASSESSMENT

Occasionally, in addition to submitting assignments to their instructors for evaluation and a grade, students will also be asked to submit completed assignments, called ‘artifacts,’ for assessment of course and program outcomes and the College’s Essential Learning Outcomes (ELOs). The artifacts will be submitted in Blackboard or a similar technology. The level of mastery of the outcome demonstrated by the artifact DOES NOT affect the student’s grade or academic record in any way. However, some instructors require that students submit their artifact before receiving their final grade. Some artifacts will be randomly selected for assessment, which will help determine improvements and support needed to further student success. If you have any questions, please feel free to speak with your instructor or contact the Learning Outcomes Assessment office.

V. CONCEALED CARRY STATEMENT

College policy prohibits the possession of weapons on college property by students, faculty and staff, unless specifically approved in advance as a job-related requirement (i.e., Tri-C campus police officers) or, in accordance with Ohio law, secured in a parked vehicle in a designated parking area only by an individual in possession of a valid conceal carry permit.

As a Tri-C student, your behavior on campus must comply with the student code of conduct which is available on page 29 within the Tri-C student handbook, available athttp://www.tri-c.edu/student-resources/documents/studenthandbook.pdfYou must also comply with the College’s Zero Tolerance for Violence on College Property available athttp://www.tri-c.edu/policies-and-procedures/documents/3354-1-20-10-zero-tolerance-for-violence-policy.pdf

Outcomes
Course Outcome(s):
Identify and apply the different terminology and computational methods associated with graph theory.

Objective(s):
1. Define various terms for graph theory including graphs, path, circuits, Euler Paths, Euler Circuits, bridge, connected graphs, Hamilton Paths, Hamilton Circuits, trees, spanning trees, minimum spanning trees and weighted graphs.
2. Discuss the differences between Euler Paths, Euler Circuits, Hamilton Paths, and Hamilton Circuits.
3. Find minimal and maximal Hamilton Circuits using the Brute Force and Nearest Neighbor methods.
4. Find minimal spanning trees.
5. Compute the Konigsberg Bridge and Traveling Salesman problems.
Course Outcome(s):
Determine and use the correct financial formula depending in various situations.

Objective(s):
1. Use simple interest, compound interest, present value, amortization, future value of an annuity, present value of an annuity, sinking fund in appropriate situations.
2. Build an amortization table.
3. Discuss terms associated with loans and home ownership including down payment, inflation, minimum amount due, and PMI.
4. Compute the average daily balance to find the minimum amount due for a credit card and the finance charge.
5. Compute payment for fixed and open-ended installment loans.
6. Use the calculator to evaluate financial formulas.
7. Converting between percents, decimals, and fractions.
8. Calculate percent increase and decrease including percent markup and markdown.

Course Outcome(s):
Compute probabilities of various situations.

Objective(s):
1. Define and distinguish between empirical probability and theoretical probabilities.
2. Compute various probabilities including empirical, theoretical, compound (or, and, not), conditional and binomial probabilities.
3. Determine the odds of and against an event.
4. Convert between odds and probability.
5. Compute the expected value of an event.
6. Count using various methods including factorial, the multiplication principle, tree diagrams, permutations, distinct permutations and combinations.
7. Compute probabilities using the different counting methods.
8. Define and list events.
9. Define and compute probabilities associated with mutually exclusive and independent events.

Course Outcome(s):
Convert between different systems of measurement.

Objective(s):
1. Learn the difference between the English and Metric systems.
2. Discuss basic units of measurement in each system.
3. Convert between these units in the same system and the other system.
4. Determine length, area, volume, mass, and temperature in the English and metric systems.
5. Identify appropriate units of measure for various situations.
6. Recognize first, second, and third dimensional unit.
7. Discuss the advantages of using the metric system versus the English system.

Course Outcome(s):
Organize, compute, and interpret numerical data.

Objective(s):
1. Introduce different methods of sampling.
2. Discuss the misuses of statistics including faulty presentations of data and bias.
3. Compute frequency and relative frequency distributions and create associated tables and graphs.
4. Compare and contrast quantitative and qualitative data.
5. Organize data into scatter plots, histograms, frequency polygons, stem and leaf plots, pie charts, line graphs, and bar graphs.
6. Discuss the best uses for the various types of graphs.
7. Compute mean, median, mode, range, midrange, quartiles, percentiles and standard deviation for given data.
8. Compute and compute probabilities associated with normal and standard normal deviations.
9. Use the 68-95-99.7% Rule.
10. Compute z-scores.
12. Determine the equation of the line of best fit.
13. Use the calculator to compute descriptive statistics and/or organize data.
Methods of Evaluation:
1. Homework
2. Quizzes
3. Projects
4. Periodic exams
5. In class collaborative work
6. Comprehensive final exam

Course Content Outline:
1. Graph Theory
 a. Graphs, paths, and circuits
 b. The Konigsberg bridge problem
 c. Euler paths and Euler circuits
 d. Hamilton paths and Hamilton circuits
 e. Traveling salesman problems
 f. Brute force method
 g. Nearest neighbor method
 h. Trees, spanning trees, and minimum-cost spanning trees

2. Financial Literacy
 a. Percents, decimals and fractions
 b. Percent increase, percent decrease, and percent markup and markdown
 c. Simple interest
 d. Compound interest
 e. Present value
 f. Fixed and open-ended installment loans
 g. Mortgages
 h. Annuities, sinking funds, and retirement investments
 i. Finance charges using average daily balance

3. Probability
 a. Empirical probability and theoretical probability
 b. Compound probability, conditional probability, and binomial probability
 c. Odds against an event and odds in favor of an event
 d. Expected value
 e. Tree diagrams
 f. Mutually exclusive events and independent events
 g. The counting principle, permutations, and combinations
 h. Probabilities involving counting methods

4. Measurement
 a. The advantage of using the metric system versus the U.S. system
 b. The basic units used in the metric and U.S. systems
 c. Conversions within both the U.S. and metric systems
 d. Determining length, area, volume, mass, and temperature in the U.S. and metric systems
 e. Dimensional analysis and converting to and from the metric system

5. Statistics
 a. Sampling techniques
 b. Misuses of statistics
 c. Frequency distributions
 d. Histograms, frequency polygons, stem-and-leaf displays
 e. Mode, median, mean, and midrange
 f. Percentiles and quartiles
 g. Range and standard deviation
 h. Z-scores and normal distribution
 i. Correlations and linear regression

Resources
Resources Other
1. MyMath Lab software site
2. Enhanced Web Assign

Instructional Services

OAN Number.
TMMSL

Top of page
Key: 2834