DMS-235B: DOPPLER PRINCIPLES AND INSTRUMENTATION

Cuyahoga Community College

Viewing: DMS-235B : Doppler Principles and Instrumentation

Board of Trustees: March 2020

Academic Term:

Fall 2021

Subject Code DMS - Diagnostic Medical Sonography

Course Number:

235B

Title:

Doppler Principles and Instrumentation

Catalog Description:

Study of resolution, display modes, hemodynamics, Doppler principles and related instrumentation as it relates to ultrasound.

Credit Hour(s):

1

Lecture Hour(s):

1

Requisites

Prerequisite and Corequisite

DMS-1071 Concepts of Physics in Diagnostic Sonography and ENG-0995 Applied College Literacies, or appropriate score on English Placement Test.

Note: ENG-0990 Language Fundamentals II taken prior to Fall 2021 will also meet prerequisite requirements.

Outcomes

Course Outcome(s):

Evaluate the various methods and the purpose behind signal processing in the ultrasound system.

Objective(s):

1. Identify the types of artifacts encountered in diagnostic ultrasound and state their probable causes.

- 2. Explain the various types of ultrasound mode display forms.
- 3. Differentiate between the various types of resolution and indicate how to compensate for a decline in resolution.

Course Outcome(s):

Analyze the laws of hemodynamics to its effects on the circulatory system.

Objective(s):

- 1. Distinguish how fluid, pressure, and resistance are interrelated.
- 2. Identify the various kinds of flow encountered in circulation.
- 3. Explain how stenosis affects blood flow.

Course Outcome(s):

Distinguish and differentiate between a normal and abnormal Doppler display.

Objective(s):

- 1. Differentiate between the various methods of Doppler signal analysis.
- 2. Describe the basic principles of color flow Doppler.
- 3. Identify the instrumentation involved in color flow.

- 4. Determine whether color flow imaging, power Doppler imaging or duplex Doppler imaging is more appropriate in a given situation.
- 5. Explain the Doppler Effect and describe the interrelationships between the Doppler equation variables.
- 6. Evaluate Doppler images to provide a determination of the Doppler Effect.
- 7. Identify the various Doppler artifacts encountered in diagnostic ultrasound and explain probable causes.

Methods of Evaluation:

- 1. Weekly quizzes
- 2. Weekly written assignments
- 3. Comprehensive mid term examination
- 4. Comprehensive final examination

Course Content Outline:

- 1. Concepts
 - a. Critical thinking
 - b. Digital devices
 - c. Instrumentation
 - d. Artifacts
 - e. Bioeffects
 - f. Display modes
 - g. Resolution
 - h. Doppler
 - i. Hemodynamics
- 2. Skills
 - a. Interpret Doppler signals
 - b. Interpret hemodynamic changes
 - c. Manipulate machine adjustments for quality images
- 3. Issues
 - a. Benefits
 - b. Limitations
 - c. Operator dependent
 - d. Interpretation results
 - e. Atypical studies
 - f. Accuracy

Topical Outline

- 1. Modes of display
 - a. Principal Display Modes (A-mode, B-mode, M-mode)
 - i. Definition of each mode
 - ii. Information displayed on each mode
 - iii. Advantages and disadvantages of each mode
 - b. Principles of Real-time Image Formation
 - i. Relationship between echo amplitude and B-mode display
 - ii. Positioning of echoes
 - iii. Harmonics
 - iv. 3-D and 4-D
- 2. Resolution
 - a. Axial Resolution
 - i. Dependence on spatial pulse length/ pulse duration
 - ii. Numerical example
 - iii. Effect of damping
 - iv. Transducer frequency spectrum-relation to pulse duration
 - v. Bandwidth
 - b. Lateral Resolution
 - i. Dependence on beam width
 - ii. Frequency
 - iii. Transducer size and focal characteristics
 - iv. Range
 - c. Slice Thickness Resolution (Elevational Resolution)

- i. Dependence on beam width
- ii. Transducer array and focal characteristics
- iii. Frequency
- iv. Lateral and axial resolution relationship
- d. Temporal
 - i. Lines
 - ii. Frame
 - iii. Sector size
 - iv. Depth
 - v. Foci
 - vi. Pulse repetition frequency
- 3. Hemodynamics
 - a. Energy gradient
 - b. Effects of viscosity, friction, inertia
 - c. Pressure/volume/flow relationships
 - d. Velocity
 - e. Steady flow
 - i. Laminar
 - ii. Parabolic
 - iii. Disturbed
 - iv. Turbulence
 - 1. Eddies
 - 2. Reynold's number
 - f. Pulsatile flow
 - g. Stenosis
 - i. Continuity Rule
 - ii. Bernoulli Effect
 - h. Venous resistance
 - i. Hydrostatic pressure
 - j. Effects of respiration (phasicity)
- 4. Doppler Physical Principles
- a. Doppler Effect
 - i. Principle as related to sampling red blood cell movement
 - ii. Doppler equation
 - 1. Transmitted versus received
 - 2. Effect of source frequency on shift
 - 3. Effect of the angle on shift
 - 4. Effect of reflector velocity
 - b. Factors influencing the magnitude of the Doppler shift frequency
 - i. Range of the Doppler shift frequency
 - ii. Effects of beam angle, transmitted frequency, flow velocity, and flow direction
- 5. Doppler Instruments
 - a. Pulsed wave Doppler
 - i. Transducer construction
 - ii. Benefits
 - iii. Limitations
 - iv. Nyquist limit
 - v. Range ambiguity
 - b. Continuous wave Doppler
 - i. Transducer construction
 - ii. Benefits
 - iii. Limitations
 - iv. Uni- and bi- directional units
 - c. Instrumentation
 - i. Receiver
 - ii. Demodulater
 - iii. Wall filter for clutter rejection
 - iv. Directional devices
 - d. Duplex instruments-definition and basic principles

- e. Spectral analysis
 - i. Purpose
 - 1. Direction
 - 2. Velocity
 - 3. Duration
 - 4. Character
 - 5. Magnitude
 - ii. Fast Fourier Transform (FFT)
 - iii. Diagnostic measurements (indices-i.e. pulsatility, resistive)
- 6. Color Flow Imaging
 - a. Basic Principles
 - i. Sampling methods
 - ii. Display of Doppler information
 - 1. Reflector direction
 - 2. Average velocity
 - 3. Velocity variance
 - iii. Advantages and limitations
 - b. Instrumentation
 - c. Methods of signal analysis
 - i. Fast Fourier Transform
 - 1. Spectral analysis
 - 2. Axis
 - 3. Turbulent vs. Laminar flow
 - ii. Autocorrelation
 - iii. Time domain processing
 - iv. Color field size and frame rate
 - 1. Ensemble length (packet size, pulse packet)
 - 2. Line density
 - 3. Maximum depth
 - v. Color maps, assignment, or coding
 - 1. Hue
 - 2. Saturation
 - 3. Luminance (significance, brightness, intensity)
 - vi. Filters
 - d. Artifacts Associated with Doppler and Color Flow
 - i. Instrumentation (Aliasing, Slice Thickness, Reverberation, Mirror Imaging, Ghosting or Flash, Registration, Incident Beam Angle, Bleed and Clutter)
 - 1. Definitions
 - 2. Mechanisms of Production
 - 3. Appearance
- 7. Power Doppler
 - a. Displayed information
 - b. Advantages and limitations

Resources

Hedrick, Wayne R. Technology for Diagnostic Sonography. 1st ed. St. Louis, MO: Elsevier Science, 2012.

Hoskins, Peter, et al. Diagnostic Ultrasound: Physics and Equipment. 3rd ed. : CRC, 2019.

Kremkau, Frederick. Diagnostic Ultrasound Principles and Instruments. 10th ed. St. Louis: Saunders, 2020.

Miele, Frank R. Ultrasound Physics and Instrumentation. 5th ed. Forney, TX: Pegasus Lectures, 2013.

Hughes, Sheila. National Certification Examination Review: Sonography Principles and Instrumentation (SPI). 4th ed. Dallas, TX: Society of Diagnostic Medical Sonography, 2009.

Edelman, Sidney K. Understanding Ultrasound Physics. 4th ed. Dallas, TX: ESP, 2012.

Hoskins, Peter, Martin, Kevin and Thrush, Abigail Hoskins, Peter, et . *Diagnostic Ultrasound: Physics and Equipment*. 3rd ed. Boca Raton: Taylor & Francis Group , 2019.

Owen, Cindy A and Zagzebski, James. A. Ultrasound Physics Review: A Review for the ARDMS SPI Exam.. Pasadena: Davies, 2017.

Penny, Steven M., Traci B. Fox and Cathy Godwin. *Examination Review for Ultrasound: Sonography Principles & Instrumentation*. 2nd ed. Philadelphia: Lippincott Williams & Wilkins, 2017.

Top of page Key: 1468