CNST-2210: MECHANICAL AND ELECTRICAL SYSTEMS

Cuyahoga Community College

Viewing: CNST-2210 : Mechanical and Electrical Systems

Board of Trustees: January 2023

Academic Term:

Fall 2023

Subject Code

CNST - Construction Engineering Tech

Course Number:

2210

Title:

Mechanical and Electrical Systems

Catalog Description:

Study of mechanical and electrical systems for building construction, water supply, waste and sanitation. Heat loss, heat gain and hydronic heating systems; forced air and solar heating systems used in buildings; electrical systems of power distribution and lighting for commercial buildings among the topics covered.

Credit Hour(s):

3

Lecture Hour(s):

3

Requisites

Prerequisite and Corequisite

CNST-2131 Construction Methods and Materials or concurrent enrollment; and eligibility for MATH-0955 Beginning Algebra; or departmental approval.

Outcomes

Course Outcome(s):

Recognize and identify heating and cooling systems in commercial and/or residential buildings in order to determine the method(s) used for heating and cooling in the building.

Objective(s):

- 1. Identify the electrical systems that are specified for a building design.
- 2. Explain the principles of electrical service delivery from a transformer substation to an actual building.
- 3. Identify mechanical systems specified for a building design including plumbing, heating, and cooling.

Course Outcome(s):

Participate in planning and design of electrical distribution, lighting, and electrical energy management from reading a set of working "as-built" plans.

Objective(s):

- 1. Explain the principles of electrical service delivery from a transformer substation to an actual building.
- 2. Analyze and select proper methods applicable for installation of electrical and mechanical systems for buildings.
- 3. Explain current fire protection systems and national codes for buildings.

Course Outcome(s):

Participate in the planning, design, and economical selection of mechanical equipment for buildings from reading a set of working "as-built" plans.

Objective(s):

- 1. Explain the principles of environmental control required for water treatment and sewer systems.
- 2. Explain the principles of heating and cooling operations required for environmental control in buildings.
- 3. Identify mechanical systems specified for a building design including plumbing, heating, and cooling.
- 4. Analyze and select proper methods applicable for installation of electrical and mechanical systems for buildings.
- 5. Explain current fire protection systems and national codes for buildings.

Methods of Evaluation:

- a. Quizzes
- b. Written Assignments
- c. Exams
- d. Instructor observation/evaluation of student lab exercise performance
- e. Participation
- f. Projects
- g. Oral presentations

Course Content Outline:

- a. Water Systems
 - i. Public and private water systems and pumping methods
 - ii. Line types used in structural drawing
 - iii. Water treatment operation
 - iv. System maintenance
 - 1. thermal expansion
 - 2. shock expansion
 - v. Up-feed distribution & pumping and applications
 - vi. Down-feed pumping and applications
 - vii. Hot water supply
 - capacity calculations
 - 2. circulation system
 - 3. storage tank size
 - viii. Water supply
 - 1. water pressure & pipe size
 - 2. water consumption
- b. Sanitary systems
 - i. Principles
 - ii. Governing codes
 - iii. Sanitary drainage
 - 1. building drains
 - 2. soil & waste vent stacks
 - 3. plumbing codes
 - 4. system design
 - iv. Special Equipment
 - 1. sumps and ejectors
 - 2. backflow preventers
 - 3. backwater valves
- c. Plumbing Systems
- i. Pipe & fittings
 - ii. Pipe flow & venting
 - iii. Plumbing fixtures
 - 1. water closets
 - 2. lavatories
 - 3. tubs and showers
 - 4. laundry sinks
- d. Storm Sewer Systems
 - i. Waste problems
 - ii. Water pollution control

- iii. Water retention
- iv. Water drainage and run-off
- e. Sanitary Sewage Disposal Systems
 - i. Municipal sewage treatment
 - ii. Private sewage treatment
 - iii. Sewer piping and materials
 - 1. pipe size
 - 2. manhole location
- f. Fire Protection Systems
 - i. National codes
 - ii. Building materials
 - iii. Building design
 - iv. Signal and alarm planning
 - v. Lighting protection
 - vi. Standpipes
- g. Heating and Cooling Systems
 - i. Heat loss
 - ii. Heat flow and transfer
 - iii. Effects of air motion
 - iv. Heat gain
 - v. Methods of heating
 - 1. boilers, furnace, radiant, electrical
 - 2. system controls
 - 3. geothermal
 - vi. Air Conditioning
 - 1. compression cooling
 - 2. absorption cooling
 - 3. air distribution
 - 4. unit capacity
 - 5. equipment selection
- h. Electricity Principles
 - i. Amps, volts, watts, ohms
 - ii. DC series & parallel circuits
 - iii. AC-DC circuits
 - iv. Electricity generation
- i. Electrical Systems
 - i. Conductors and raceways
 - ii. Equipment ratings
 - 1. voltage, wattage, current
 - 2. ampacity
 - 3. gauge
 - 4. insulation
 - 5. cable
 - 6. busway
 - 7. bus
 - 8. connections
 - iii. Service and utilization
 - 1. underground
 - 2. overhead
 - 3. metering
 - 4. transformers & poles
 - 5. service switch
 - 6. wiring devices
 - iv. Protective devices
 - 1. fuses, circuit breakers
 - 2. lighting protection
 - v. Emergency power generation
- j. Wiring Design

- i. Load estimating
- ii. 2-3-4 wire service
- iii. Single and three-phase service
- iv. Panel design
- v. Circuit design
- vi. Safety switches
- k. Electronic Security
- i. Fire detection systems
 - ii. Security devices
 - 1. smoke
 - 2. fume
 - 3. gas detection
- iii. Control systems & monitors
- I. Energy Management Systems
- i. Timers, photoelectric cells
- ii. Computer control
- m. Lighting Systems
 - i. Luminance
 - ii. Contrast
 - iii. Exposure, glare, diffusion
 - iv. Color
 - v. Sources
 - 1. incandescent lamps
 - 2. fluorescent lamps
 - 3. neon lamps
 - 4. tungsten lamps
 - 5. HID lamps
 - 6. mercury lamps
 - vi. Design
 - 1. General & local lighting
 - 2. Indirect
 - 3. Fixture mounting height

Resources

Ching, Francis and Adams, Cassandra. (2020) Building Construction Illustrated, New York: John Wiley and Sons.

Grondzik, Kwok, Stein & Reynolds. (2019) Mechanical and Electrical Equipment for Buildings, New York: John Wiley and Sons.

Stein, Benjamin. (1997) Building Technology: Mechanical & Electrical Systems, New York: John Wiley and Sons.

ATP Staff. (2013) Mechanical and Electrical Systems for Construction Managers , ATP.

Janis, Richard and William Tao. (2018) mechanical and Electrical Systems in Buildings, Pearson.

Top of page Key: 1192