ATPF-2155: AIR CONDITIONING INSTALLATION AND CONTROLS

Cuyahoga Community College

Viewing: ATPF-2155 : Air Conditioning Installation and Controls

Board of Trustees:

2015-12-03

Academic Term: Spring 2019

Subject Code ATPF - Applied Ind Tech - Pipefitters

Course Number:

2155

Title:

Air Conditioning Installation and Controls

Catalog Description:

Course covers different types of air conditioning systems and related controls. In addition, installation and system balancing and troubleshooting mechanical problems are addressed.

Credit Hour(s):

2

Lecture Hour(s):

2

Requisites

Prerequisite and Corequisite

Departmental approval: admission to Pipefitter's Apprenticeship program.

Outcomes

Course Outcome(s):

Examine the various types of air conditioning (A/C) systems and discuss the components of each.

Objective(s):

- 1. Identify the different types of A/C units.
- 2. List the components of A/C units and explain the function of each.
- 3. Discuss the different types of A/C duct work and assess the advantages/disadvantages of each.
- 4. Identify the tasks required for A/C installation.
- 5. Explain the extended plenum system and discuss the respective purpose.
- 6. List and define the terms related to A/C systems.
- 7. Differentiate between packaged equipment and split A/C units.

Course Outcome(s):

Discuss the importance of proper balancing of A/C systems.

Objective(s):

- 1. Explain system pressure with respect to A/C systems.
- 2. Explain the relationship between the air handler with respect to air volume and balance.
- 3. Describe the different methods of balancing A/C systems.
- 4. Calculate the volume of air being delivered using velocity and cross sectional areas.

Course Outcome(s):

Describe the control sequence for an A/C system, explain the electrical applications and the respective air management components.

Objective(s):

- 1. Explain the hierarchy of the control sequence.
- 2. Justify the order of operation with respect to control sequencing.
- 3. Differentiate between operational and safety controls.
- 4. Describe the electrical applications with respect to the cooling system.
- 5. Examine electrical diagrams and interpret schematics using symbols, loads and power sources.
- 6. Describe the different thermostats used for temperature sensing and system activation.

Course Outcome(s):

Demonstrate the ability to troubleshoot problems with respect to cooling systems.

Objective(s):

- 1. Select the proper instruments used for diagnosing mechanical problems in A/C systems.
- 2. List and describe common symptoms for over charged A/C units.
- 3. Explain the effects of humidity on cooling systems.
- 4. Evaluate air management controls using voltmeters.

Methods of Evaluation:

- 1. Class participation
- 2. Quizzes
- 3. Tests
- 4. Final exam

Course Content Outline:

- 1. Air conditioning systems
- a. Types
 - i. Water cooled
 - ii. Air cooled
 - iii. Split
 - b. Components
 - i. Blower motor
 - 1. Sir distribution
 - 2. Climate management
 - ii. Condensing unit
 - Heat removal
 - 2. Refrigerant control
 - iii. Evaporator
 - 1. Conditioned air
 - 2. Humidity control
 - iv. Filter drier
 - v. Condenser motor
 - 1. Coil
 - 2. Air movement
 - c. Duct work
 - i. Types
 - 1. Sheet metal
 - 2. Fiber glass
 - 3. Insulated
 - 4. Flexible
 - ii. Function
 - iii. System
 - 1. Transitions
 - 2. Plenums
 - 3. Adapters/boots
 - 4. Turning veins

- 5. Main trunk
- 6. Branch lines
- iv. Supplied air
- v. Return air
- d. Installation tasks
 - i. Equipment layout
 - ii. Safety review
 - 1. Equipment
 - 2. Personnel
 - iii. Equipment placement
 - iv. Air distribution
 - v. System energizing
- e. Plenum
 - i. Purpose
 - 1. Air collection
 - 2. Temperature management
 - ii. Extended
 - 1. Trunk
 - 2. Square
 - 3. Round
 - iii. Delivery
 - 1. Reducing
 - 2. Perimeter loop
- f. Terminology
 - i. Plenum
 - ii. A/C system
 - iii. Split unit
 - iv. Duct
 - v. Cross sectional area
 - vi. Schematic
 - vii. Control sequencing
- viii. Air handler
- ix. Balance
- x. Loads
- g. Packaged equipment
 - i. Roof top unit
 - ii. Commercial
 - iii. Size
- h. Split unit
 - i. External
 - ii. Interior
 - iii. Size
- 2. System balancing
- a. Method
 - i. Air measuring
 - ii. Calculation
 - iii. Air function charts
 - iv. Dampers
 - b. Calculations
 - i. Area
 - 1. Duct size
 - 2. Room dimensions
 - ii. Room air balance
 - iii. Averages
 - iv. Traversing
 - c. Pressure system
 - i. Fan speed
 - ii. Motor size
 - iii. Friction loss

- d. Air handler
 - i. Furnace
 - ii. Cooling unit
 - iii. Coils
- e. Air volume
 - i. Balance
 - ii. Speed
- 3. A/C controls
 - a. Control sequence
 - i. Thermostat
 - ii. Blower motor
 - iii. Valve
 - iv. Switches
 - 1. High
 - 2. Low
 - b. Order of operation
 - c. Controls
 - i. Operational
 - 1. Thermostat
 - 2. Fan relay
 - 3. Disconnect
 - ii. Safety
 - 1. High/low limits
 - 2. Thermocouple
 - 3. Overload switch
 - 4. Relays
 - 5. Compressor overload
 - d. Electrical applications
 - e. Diagrams and schematics
 - i. Symbols
 - ii. Loads
 - iii. Power source
 - f. Thermostats
 - i. Types
 - 1. Bi metal
 - 2. Indoor
 - 3. Outdoor
 - ii. Function
 - 1. Air management
 - 2. Temperature control
 - 3. Activation
- 4. Troubleshooting
 - a. Instruments
 - i. Voltmeter
 - ii. Refrigeration gages
 - iii. Ohm meter
 - iv. Leak detector
 - b. Over charge systems
 - i. Line sweat
 - ii. Suction pressure readings
 - iii. Freeze up
 - c. Humidity
 - i. Comfort
 - ii. Static electricity
 - iii. Bacterial growth
 - iv. Dryness

- i. Air management control
 - 1. Building automated system
 - 2. Voltmeter

5. .

Resources

Althouse, Turnquist and Bracciano. *Modern Refrigeration and Air Conditioning*. 4th edition. Goodheart-Willcox Co., South Holland, Illinois, 1979.

R. Jesse Phagan. Applied Mathematics. 4th edition. Goodheart-Wilcox Co./Tinley Park, II, 2010.

Thomas W. Frankland. Pipe Trades. Current edition. Glencoe/McGraw-Hill, New York, New York, 1969.

Resources Other

http://www.free-ed.net/sweethaven/MechTech/Refrigeration/coursemain.asp?lesNum=4&modNum=1 http://physics.about.com/od/glossary/g/heat.htm http://www.refrigerationbasics.com/1024x768/definitions1.htm

Top of page Key: 590