ATPF-1135: REFRIGERATION APPLICATIONS AND ICE MACHINES

Cuyahoga Community College

Viewing: ATPF-1135 : Refrigeration Applications and Ice Machines

Board of Trustees:

2015-12-03

Academic Term: Spring 2019

Subject Code ATPF - Applied Ind Tech - Pipefitters

Course Number:

1135

Title:

Refrigeration Applications and Ice Machines

Catalog Description:

Refrigeration course discussing various refrigeration types and conditions for proper application. Also included are defrost methods for walk-in equpment, ice machines operation and product harvest and equipment service procedures.

Credit Hour(s):

2

Lecture Hour(s):

2

Requisites

Prerequisite and Corequisite

Departmental approval: admission to Pipefitter's apprenticeship program.

Outcomes

Course Outcome(s):

Differentiate between the various types of refrigeration equipment and systems and choose the best application for the respective condition.

Objective(s):

- 1. List the different types of refrigeration equipment.
- 2. Describe various defrost methods.
- 3. Select the best equipment to use based on operating costs and longevity.
- 4. Identify different refrigeration conditions.
- 5. Describe the refrigeration enclosures used for walk-in coolers.
- 6. Explain how dissipated heat from coolers is recycled to provide auxiliary heat sources.

Course Outcome(s):

Describe various refrigeration defrost methods with respect to walk-in applications and discuss vending machines and mullion heat.

Objective(s):

- 1. List various walk-in refrigeration applications.
- 2. Differentiate between specialty display cases using cool and freeze cycles.
- 3. Describe the different frost cycles.
- 4. Describe the operation of vending machines as stand-alone units used for cooling and freezing.
- 5. Describe mullion heat and explain the circuitry used with respect to closed display cases.

Course Outcome(s):

Describe the equipment used to manufacture different types of ice and micro-processors that control ice sensors and water levels.

Objective(s):

- 1. Describe the operation of ice making machines and explain how ice is formed.
- 2. List the different types of manufactured ice.
- 3. Explain how ice shapes are produced.
- 4. Explain the operation of ice sensors in the refrigeration process.
- 5. List the specific functions of microprocessors.
- 6. Explain how water levels are maintained in ice making equipment.

Course Outcome(s):

Demonstrate the ability to service refrigeration enclosures and specialty equipment.

Objective(s):

- 1. Analyze existing conditions with respect to malfunctioning refrigeration equipment.
- 2. Identify possible causes for refrigeration equipment failure.
- 3. Differentiate between high side and low side pressure circuit problems and electrical malfunctions.
- 4. Evaluate refrigeration systems using the respective micro-processor to determine proper sequence of operation.
- 5. Connect respective refrigeration gauges to determine proper pressures at low and high side circuits.
- 6. Repair or replace defective refrigeration components and confirm the properly charged system.

Methods of Evaluation:

- 1. Quizzes
- 2. Tests
- 3. Final exam

Course Content Outline:

- 1. Refrigeration equipment, systems and conditions
 - a. Equipment types
 - i. Condensers
 - ii. Compressors
 - iii. Evaporators
 - b. Systems
 - i. Low temperature cooling
 - ii. Medium temperature cooling
 - iii. Single evaporator
 - iv. Multiple evaporator
 - c. Conditions
 - i. Frozen applications
 - ii. Low temperature/non-frozen
 - d. Defrost methods
 - i. Electric
 - ii. Air cooled ambient
 - iii. Internal heat
 - iv. External heat
 - e. Longevity and operating costs
 - f. Walk-in coolers
 - i. Purpose
 - ii. Function
 - iii. Insulating components
 - iv. Operation
- 2. Defrost methods and specialty applications
 - a. Defrost cycles
 - i. Internal heat
 - ii. External heat
 - iii. Coil de-icing
 - b. Vending machines

- i. Stand- alone units
- ii. Cooling-freezing
- c. Mullion heat
 - i. Condensation control
 - ii. Controls
 - 1. Electrical
 - 2. Defrost
- d. Walk-in refrigeration units
 - i. Permanent
 - ii. Knock down
 - iii. Application
 - 1. Storage
 - 2. Temperature control
 - 3. Condensate removal
- e. Specialty cases
 - i. Cooling cycles
 - 1. Product preservation
 - 2. Temperature maintenance
 - ii. Freeze cycle
 - iii. Types
 - 1. Open
 - 2. Closed
- 3. Ice machines and microprocessors
 - a. Ice machine types
 - i. Size
 - ii. Cube description
 - b. Ice formation
 - i. Water flow
 - ii. Evaporator plate
 - c. Types of ice
 - i. Square
 - ii. Half moon
 - iii. Round
 - iv. Hollow
 - d. Ice production
 - i. Refrigerant cooling
 - ii. Water travel
 - iii. Plate cooling
 - iv. Limit control
 - v. Harvest cycle
 - e. Microprocessor
 - i. Components
 - 1. Set point potentiometer
 - 2. Temperature sensor
 - 3. Voltage controller
 - 4. Circuitry
 - 5. Thermistor
 - ii. Function
 - 1. Temperature control
 - 2. Water pump
 - 3. Defrost cycle
 - 4. Voltage sensor
 - f. Water level
 - i. Controls
 - ii. Floats
 - iii. Maintenance
- 4. Service/troubleshooting

- a. Malfunctioning refrigeration equipment
 - i. Existing conditions
 - 1. Temperature
 - 2. Voltages
 - 3. Equipment rotation
 - ii. Refrigeration equipment
 - 1. Thermostat
 - 2. Connections/wiring
 - 3. Fans/motors
- b. Pressure circuitry
 - i. High side pressure
 - 1. Refrigerant levels
 - 2. Thermo expansion valve
 - ii. Low side pressure
 - 1. Under charged system
 - Refrigerant flow
- c. Microprocessor
 - i. Evaluation
 - ii. Data analysis
 - iii. Sequence of operations
 - iv. Solutions
- d. Refrigeration gages
 - i. Pressures
 - 1. High
 - 2. Low
 - ii. Recharge systems
 - iii. Gage manifold
- e. Charged system
- f. Components
 - i. Repair
 - ii. Replacement
- g. Analysis
 - i. Practical applications
 - ii. Theoretical solutions

Resources

United Association Training Department. *HVAC/R Training.* Current edition. International Pipe Trades Training Committee, Inc., Washington, D.C., 2006.

Thomas W. Frankland. Pipe Trades. current edition. Glencoe/McGraw-Hill, New York, New York, 1969.

Althouse, Turnquist and Bracciano. *Modern Refrigeration and Air Conditioning*. 4th edition. Goodheart-Willcox Co., South Holland, Illinois, 1969.

Resources Other

- 1. http://www.free-ed.net/sweethaven/MechTech/Refrigeration/coursemain.asp?lesNum=4&modNum=1
- 2. http://physics.about.com/od/glossary/g/heat.htm
- 3. http://www.refrigerationbasics.com/1024x768/definitions1.htm

Top of page Key: 567