ATPF-1085: REFRIGERATION AND REFRIGERANTS

Cuyahoga Community College

Viewing: ATPF-1085 : Refrigeration and Refrigerants

Board of Trustees: 2015-12-03

Academic Term:

Spring 2019

Subject Code

ATPF - Applied Ind Tech - Pipefitters

Course Number:

1085

Title:

Refrigeration and Refrigerants

Catalog Description:

Introduction to the refrigeration process including relationships between pressure and boiling points and vaporization and cooling coils. Also covers refrigeration cycles, plotting and interpretation of pressure/enthalpy charts.

Credit Hour(s):

2

Lecture Hour(s):

2

Requisites

Prerequisite and Corequisite

Departmental approval: admission to Pipefitter's apprenticeship program.

Outcomes

Course Outcome(s):

Identify the terms related to refrigeration and discuss the applications to the commercial heating and cooling industry.

Objective(s):

1. Define the terms used in refrigeration.

- 2. List the different applications of refrigeration in commercial use.
- 3. Discuss the need for refrigeration in the preservation of food.
- 4. Explain heat transfer as it relates to refrigeration equipment.
- 5. Identify different types of refrigeration equipment.

Course Outcome(s):

Discuss the refrigeration process including heat transfer, heat pumping and various refrigerants that are used.

Objective(s):

- 1. List various refrigerants and discuss the applications to refrigeration.
- 2. Explain the process of moving heat from an area of low temperature to a medium with higher temperature.
- 3. Describe the heat pumping process.
- 4. Explain pressure-temperature relationships as they correlate to boiling points of refrigerants.
- 5. Explain the purpose of refrigerants and discuss the process of changing vapor to liquids.

Course Outcome(s):

Discuss the refrigeration components and explain how they interact with each other.

Objective(s):

- 1. List the components of a refrigeration system.
- 2. Explain how a condenser converts gas into a liquid.
- 3. Explain how a compressor changes a low pressure refrigerant to a vapor.
- 4. Discuss the function of an evaporator with the metering devices.
- 5. Describe the critical functions of the metering device as they relate to sub-cooled liquids.
- 6. Compare the cooling process with dehumidification and discuss the similarities and differences.

Course Outcome(s):

Discuss how refrigeration plotting enthalpy charts are used to maintain peak performance of cooling equipment and the refrigeration process.

Objective(s):

- 1. Discuss critical points and the saturated liquid line displayed on pressure/enthalpy diagrams.
- 2. Explain how enthalpy plots are used to identify sub-cooled and superheated regions in an evaporator.
- 3. Describe how lines of constant specific volume and pressure are used to maintain optimum cooling cycles.
- 4. Explain the characteristics of flash gas and describe its ability to sub cool the surrounding environment.
- 5. Demonstrate the ability to plot various refrigeration cycles using different refrigerants.

Methods of Evaluation:

- 1. Quizzes
- 2. Tests
- 3. Final exam

Course Content Outline:

- 1. Terms and abbreviations
 - a. Refrigeration
 - i. Cryogenics
 - ii. Tons of refrigeration
 - iii. Refrigerants
 - b. Commercial applications
 - i. Comfort cooling
 - ii. Process cooling
 - iii. Industrial cooling
 - c. Food preservation
 - i. Spoilage
 - ii. Bacteria growth
 - iii. Frozen versus fresh
 - d. Heat transfer
 - i. Thermodynamics
 - ii. Directional flow
 - iii. Temperature levels
 - e. Equipment
 - i. Insulators
 - ii. Refrigerator
 - iii. Coils Evaporator
 - iv. Condenser
- 2. Refrigeration process
 - a. Heat
 - i. High temperature
 - ii. Low temperature
 - iii. British Thermal Unit (BTU)
 - b. Heat pump
 - i. Mechanism
 - ii. Box temperature
 - iii. Heat removal
 - c. Pressure- temperature
 - i. Boiling point
 - ii. Vapor pressure

- iii. Barometric pressure
- iv. Freezing temperatures
- d. Refrigerants
 - i. Purpose
 - 1. Heat transfer
 - 2. Sub- cooling
 - 3. Super heat
 - ii. Process
 - 1. Liquid-vapor
 - 2. Thermodynamics
 - iii. Types
 - 1. Chlorofluorocarbons
 - 2. Hydrochlorofluorocarbons
 - 3. Hydrofluorocarbons
 - iv. Applications
- 3. Refrigeration components
- a. Compressor
 - i. Scroll
 - ii. Reciprocating
 - b. Condensing coil
 - i. Fan cooled
 - ii. Water cooled
 - iii. Water cooled
 - iv. Vaporization
 - c. Expansion devices
 - i. Thermal
 - ii. Manual
 - iii. Automatic
 - iv. Super heat
 - d. Evaporator and metering device
 - i. Dehumidifier
 - ii. Saturation point
 - iii. Critical functions
 - e. Cooling processes
- 4. Refrigeration plotting
 - a. Enthalpy charts
 - i. Refrigeration process
 - ii. Cooling equipment
 - b. Critical points
 - i. Saturated liquid line display
 - ii. Saturated vapor
 - iii. Pressure/enthalpy diagrams
 - c. Specific volume
 - i. Optimum cooling cycles
 - ii. Isothermal bars
 - iii. Net refrigeration effect
 - d. Flash gas
 - i. Characteristics
 - 1. Pressure changes
 - 2. Refrigeration vaporization
 - 3. Environmental sub-cooling
 - ii. Plotting cycles

Resources

Althouse, Turnquist and Bracciano. *Modern Refrigeration and Air Conditioning.* 4th. The Goodheart-Willcox Co., South Holland, Illinois, 1979.

United Association Training Department. HVAC/R Training. current. International Pipe Trades Training Committee, Inc., Washington, D.C, 2006.

R. Jesse Phagan. Applied Mathematics. {ts '2015-04-07 00:00:00'}.

Resources Other

- 1. http://www.free-ed.net/sweethaven/MechTech/Refrigeration/coursemain.asp?lesNum=4&modNum=1
- 2. http://physics.about.com/od/glossary/g/heat.htm
- 3. http://www.refrigerationbasics.com/1024x768/definitions1.htm

Top of page Key: 564