ATGL-1340: RIGGING FOR GLAZIERS

Cuyahoga Community College

Viewing: ATGL-1340 : Rigging for Glaziers

Board of Trustees: March 2020

Academic Term: Fall 2020

Subject Code ATGL - Appld Indus Tech - Glazing

Course Number:

1340

Title: Rigging for Glaziers

Catalog Description:

Basic course covering proper crane set-up including safety concerns, below the hook devices and signaling procedures. In addition, field lifting techniques will be applied.

Credit Hour(s):

- 1
- Lecture Hour(s):
- 1

Requisites

Prerequisite and Corequisite

Departmental approval: admission to apprenticeship program.

Outcomes

Course Outcome(s):

Discuss the risks related to rigging for glaziers, describe proper crane set-up and safety and list and explain the use of rigging hardware and slings.

Objective(s):

- 1. List and define the terms related to crane rigging.
- 2. Identify and explain the safety standards for proper risk management in rigging as prescribed by governing agencies.
- 3. List the various crane hazards related to rigging operations.
- 4. Develop rigging plans and strategies for basic, approved written and engineering lifts.
- 5. Assess environmental conditions including ground stability and weather related effects to safely position cranes for critical lifts.
- 6. Identify the different hardware used for rigging including connectors, attachment points, and collectors.
- 7. Discuss the types, application, and selection of overhead hoisting slings.
- 8. Compute sling angle stress with respect to sling angle and applied capacities.

Course Outcome(s):

Discuss the function and design use and selection of below the hook devices, including signaling training and qualifications commonly used in crane rigging.

Objective(s):

- 1. Identify the various below the hook devices used in crane rigging.
- 2. Select the correct sling used for load control with respect to safety practices estimate.
- 3. Estimate load weight to determine the center of gravity using basic math computation.

- 4. Identify the different training and qualifications required for proper crane signaling as prescribed in industry safety standards.
- 5. Evaluate various lifting scenarios using cranes and employ proper signaling methods, modes, and types.

Course Outcome(s):

Demonstrate the ability to properly select Below the Hook devices and safely perform lifting techniques in accordance with industry safety standards.

Objective(s):

- 1. Assess lifting requirements and select correct Below the Hook devices.
- 2. Assemble various hardware including shackles, eye bolts, and turnbuckles needed for safe lifts.
- 3. Determine and apply the correct hitch required for given loads.
- 4. Attach selected devices to crane hook.
- 5. Employ proper signaling modes, methods, and types in working conjunction with crane operators.

Methods of Evaluation:

- 1. Group Exercises
- 2. Quizzes
- 3. Tests
- 4. Participation

Course Content Outline:

- 1. Glazier rigging
 - a. Terminology
 - i. Shackle
 - ii. Safe working load
 - iii. Sheave
 - iv. Reaving
 - v. Capacity
 - vi. Sling angle
 - vii. Dynamic force
 - viii. Hoist
 - ix. Tag line
 - x. Choker
 - xi. Hitch
 - xii. Rigging
 - xiii. Hazards
 - xiv. Safety
 - xv. Rigging plan
 - xvi. Critical lift
 - xvii. Sling
 - xviii. Sling angle stress
 - b. Safety agencies
 - i. Occupational Safety and Health Administration (OSHA)
 - ii. American National Standard Institute
 - iii. American Society of Mechanical Engineers
 - iv. Standards
 - 1. Federal standards for workers
 - 2. Industry standards
 - 3. Crane
 - 4. Rigging
 - 5. Signaling
 - 6. Rules and codes
 - c. Crane hazards
 - i. Overhead
 - 1. Electrical
 - 2. Obstructions

- ii. Environmental
 - 1. Weather
 - 2. Site
- iii. Tipping
- iv. Swing radius
- v. Overloading
- vi. Inspection criterion
 - 1. Wire rope
 - 2. Cracks
 - 3. Excessive temperature
 - 4. Weld splatter
 - 5. Load hooks
- d. Rigging: plans and strategies
 - i. Purpose
 - 1. Safety
 - 2. Load transfer
 - ii. Types
 - 1. Basic
 - 2. Written and approved
 - 3. Engineered
 - iii. Basic
 - 1. Repetitive lifts
 - 2. Known load weight
 - 3. Single crane lift
 - 4. Normal rigging application
 - iv. Written/approved
 - 1. Basic lift items
 - 2. Calculated load weight
 - 3. Sling angle stress
 - v. Engineered
 - 1. Basic and written plans
 - 2. Hoisted Personnel
 - 3. High Dollar Lift
 - 4. Multi-Crane Lift
- e. Crane Positioning
 - i. Environmental Factors
 - 1. Rain
 - 2. Wind
 - 3. Ground Conditions
 - 4. Lightening
 - ii. Electrical
 - iii. Site specific
- f. Rigging hardware
 - i. Connectors and attachments
 - 1. Shackles
 - a. Chain
 - b. Wide body
 - c. Screw pin
 - d. Nut pin
 - 2. Eye bolts
 - a. Shouldered
 - b. Machined
 - c. Swivel
 - 3. Turn buckle
 - a. Hook b. Lock nut
 - D. LOCK NUT
 - ii. Collectors
 - 1. Central collection point
 - 2. Types

- a. Master link
- b. Cold weather
- c. Pear shape
- g. Slings
 - i. Types
 - 1. Nylon
 - 2. Wire rope 3. Bridle
 - 4. Synthetic

 - 5. Round
 - ii. Applications 1. Basket hitch

 - 2. Double wrapped hitch 3. Choker hitch

 - 4. Vertical
 - iii. Sling selection
 - 1. Lift description
 - 2. Rigging description
 - 3. Damage control
 - 4. Load size
 - 5. Weight
 - 6. Inspection
- h. Sling angle stress
 - i. Calculation
 - 1. Basic math
 - 2. Geometry
 - 3. Center of gravity
 - ii. Load charts
 - 1. Horizontal sling angle stress
 - 2. Stress multiplier
 - 3. Total tension applied
- 2. Crane devices and signaling
 - a. Below the hook devices
 - i. Chain fall
 - ii. Spreader bar
 - iii. Equalizer beam
 - iv. Vacuum lifters
 - b. Slings and load control
 - i. Slings
 - 1. Synthetic
 - a. Product quality
 - b. Damage control
 - 2. Wire rope
 - a. Versatile lifts
 - b. Greater load capacity
 - 3. Chain
 - a. Adjustable lengths
 - b. Multiple attachment points
 - ii. Load control
 - 1. Proper sling length
 - 2. Sling positioning
 - 3. Center of gravity
 - c. Load weight
 - i. Weight
 - 1. Listed weight
 - 2. Computed
 - ii. Center of gravity

- 1. Purpose
 - a. Level load
 - b. Hazard prevention
 - c. Lifting control
- 2. Calculation
 - a. Measuring
 - b. Chart interpretation
 - c. Math principles
- d. Signaling
 - i. Training
 - Industry requirement
 Safety standards
 - 2. Salety standa
 - ii. Qualifications 1. Signal relations
 - 2. Crane dynamics
 - 3. Competent person
- e. Signaling scenarios
 - i. Hazard recognition
 - ii. Signal selection
 - iii. Environmental conditions
 - 1. Wind
 - 2. Rain
 - 3. Snow
 - 4. Lightening
 - 5. Temperature
- iv. Methods, modes, and types
- 3. Load lifting
 - a. Lifting assessment
 - i. Load
 - ii. Hardware
 - iii. Path of travel
 - b. Hardware
 - i. Condition
 - ii. Quantity
 - iii. Load weight
 - c. Hitch
 - i. Choke
 - ii. Basket
 - iii. Double wrapped
 - iv. Vertical
 - d. Crane hook attachment
 - i. Hardware compatibility
 - ii. Hook size
 - iii. Locking hook
 - iv. Open throat hook
 - e. Signaling
 - i. Modes
 - 1. Sequence of signals
 - 2. Crane specific
 - ii. Methods
 - 1. Signal delivery
 - 2. Operator distance
 - iii. Types
 - 1. Lifting
 - 2. Extending
 - 3. Load landing

Resources

Overton. Signaling for Cranes Safety Training. Hanover, Maryland: IUPAT, 2010.

Resources Other

- 1. www.acratech.com
- 2. www.thecrosbygroup.com (http://www.thecrosbygroup.com)

Top of page Key: 4817