ATLB-2310: ADVANCED INSTRUMENTS

Cuyahoga Community College

Viewing: ATLB-2310: Advanced Instruments

Board of Trustees:

2013-05-23

Academic Term:

Spring 2019

Subject Code

ATLB - AIT-Construct/Hazard Material

Course Number:

2310

Title:

Advanced Instruments

Catalog Description:

Instrumentation used for highway and building construction and layout. Includes calculations required for determining local coordinates, staking and road alignments, and the pinning of a building with offsets and open and closed transverses. Also included are procedures and techniques required for setting up and using total station equipment. Field applications and exercises.

Credit Hour(s):

2

Lecture Hour(s):

2

Requisites

Prerequisite and Corequisite

Departmental approval: admission to Construction Tending and Hazardous Material Abatement apprenticeship program.

Outcomes

Course Outcome(s):

I. Explain the procedures followed in establishing highway and building stakes, hub locations, applied math concepts and terminology used relative to highway and building construction layout.

Objective(s):

- 1. Review applied math concepts, including decimal conversions, triangulation and trigonometry with respect to construction layout.
- 2. Interpret the various markings on grade stakes with respect to elevations, offsets, and relative site cuts and fills.
- 3. Discuss the use of total station equipment for general layout and surveying purposes.
- 4. Identify the terms related to construction layout with respect to applied total station surveying operations.

Course Outcome(s):

II. Set up total station applications.

Objective(s):

- 1. Identify the different types of equipment.
- 2. List the components of a total station instrument system.
- 3. Discuss the environmental effects on total station equipment and its operation.
- 4. Demonstrate the ability to set up the equipment and use it to perform various applications.
- 5. Maintain and care for different types of surveying equipment.

Course Outcome(s):

III. Determine local coordinates for specified construction projects.

Objective(s):

- 1. Define the terms related to coordinate systems.
- 2. Explain the differences between latitude and longitude, state plane coordinates, and local coordinates
- 3. Establish a grid system with respect to given control points originating at the South East corner of the project.
- 4. Apply the principles of the Pythagorean Theorem to calculate diagonals.
- 5. Differentiate between azimuths and bearings.
- 6. Inverse between points to establish bearings, distances, and coordinates.

Course Outcome(s):

IV. Calculate stationing and offsets using triangulation principles and staking procedures.

Objective(s):

- 1. Explain stationing concepts with respect to geographic alignment.
- 2. Identify station points with respect to engineering format.
- 3. Discuss the use of various station equation concepts.
- 4. Differentiate between horizontal and vertical alignments.
- 5. Explain how offsets relate to centerline alignment.
- 6. Calculate the components of a simple curve using applied trigonometric functions.
- 7. Demonstrate the ability to position grade stakes with respect to elevations, centerlines, offsets and appurtances.

Course Outcome(s):

V. Position a structure on a parcel of land.

Objective(s):

- 1. Identify building types by size and use.
- 2. Discuss different zoning requirements that affect set-backs and right of ways for utilities and other considerations.
- 3. Identify various layout controls, including primary, secondary, and third level control points that relate to building and utility placement.
- 4. Discuss how topographical surveys and civil site plans are used to establish existing and finish grades.
- 5. Demonstrate the ability to operate specialized surveying equipment, including total station to accurately position a building on a piece of property.
- 6. Establish building corners, offsets, and elevations for finish floor, above finish floor, grade and below grade.

Course Outcome(s):

VI. Apply open and closed traverses to construction layout and calculate coordinates for the specified control points.

Objective(s):

- 1. Identify the terms specific to traverses.
- 2. Calculate latitudes and departures with respect to right angles.
- 3. Apply mathematical concepts that are used for backchecking coordinates, angles, and distances.
- 4. Determine easting and northing coordinates.
- 5. Identify the coordinates of control points.
- 6. Explain how closing a construction layout affects primary and secondary controls.
- 7. Demonstrate the ability to use total station to locate points for building and highway jobsites.

Methods of Evaluation:

- 1. Ouizzes
- 2. Tests
- 3. Class participation

Course Content Outline:

- 1. Highway and construction layout
 - a. Terminology
 - i. Northings
 - ii. Eastings
 - iii. Control points
 - iv. Record keeping and field book
 - 1. Frontsight
 - 2. Backsight
 - 3. Height of instrument
 - 4. Interior angles
 - b. Math concepts
 - i. Decimal conversions
 - ii. Triangulation
 - iii. Applied trigonometry
 - c. Grade stakes
 - i. Positioning
 - ii. Markings
 - 1. Offsets
 - 2. Cuts
 - 3. Fills
 - 4. Stations
 - 5. Building corners
- 2. Total station
 - a. Surveying equipment
 - i. Auto level
 - ii. Digital level
 - iii. Lasers
 - iv. Global positioning systems (GPS)
 - b. Equipment
 - i. Tripod
 - ii. Prism
 - iii. Prism pole
 - iv. Data collector
 - c. Environmental effects
 - i. Rain and snow
 - ii. Cold weather
 - iii. Temperature acclimation
 - iv. Dust
 - d. Equipment set-up
 - i. Handling
 - ii. Tripod
 - 1. Adjustment
 - 2. Leveling
 - iii. Total station mounting
 - iv. Positioning
 - e. Lens cleaning
 - f. Equipment cleaning
- 3. Coordinate systems
 - a. Terms
 - i. Coordinate
 - 1. State plane
 - 2. World geodetic system
 - ii. Map projections
 - iii. Grid systems
 - iv. Bearings
 - v. Azmuths
 - b. Coordinates

4 ATLB-2310: Advanced Instruments

- i. Latitude
- ii. Longitude
- iii. State plane coordinates
- iv. Local
- c. Grid systems
 - i. Control points
 - ii. Origin
 - iii. Grid matrix
- d. Pythagorean Theorem
 - i. Right triangles
 - ii. Angles
 - iii. Distances
 - iv. Area
 - v. Diagonals
- e. Azmuths
 - i. Degrees, minutes and seconds
 - ii. Circles
 - iii. Point of origin
- f. Bearings
 - i. Defined direction
 - ii. Ninety degrees or less
 - iii. Direction based
- g. Inverse
 - i. Bearings
 - ii. Distances
 - iii. Coordinates
- 4. Stations and offsets
- a. Geographic alignment
 - . Geographic alignine
 - i. South to North
 - ii. West to East
 - iii. Geographic boundaries
 - b. Engineering format
 - i. Identification
 - ii. One hundred foot increments
 - iii. Decimal feet
 - c. Stations equations
 - i. Alignment meeting points
 - ii. Road intersections
 - iii. Point identification
 - d. Alignments
 - i. Horizontal
 - ii. Vertical
 - iii. Curves
 - iv. Tangents
 - e. Offsets
 - i. Centerline alignment
 - ii. Perpendicular reference
 - f. Catch basins, headwalls and manholes
 - g. Curve calculation
 - i. Trigonometry
 - ii. Horizontal
 - iii. Vertical
 - iv. Offsets
 - h. Application
 - i. Stake positionng
 - ii. Equipment set up and use
 - iii. Cuts and fills
 - iv. Centerlines

- v. Record keeping
- vi. Equipment maintenance
- 5. Building layout
 - a. Buildings and structures
 - i. Size
 - ii. Use
 - b. Zoning
 - i. Set backs
 - ii. Right of ways
 - iii. Utility placement
 - c. Layout controls
 - i. Primary
 - ii. Secondary
 - iii. Third level controls
 - d. Topographic maps and civil site drawings
 - i. Contours
 - 1. Existing
 - 2. Finish
 - ii. Physical features
 - 1. Existing and proposed utilities
 - 2. Natural
 - 3. Elevation data
 - e. Specialized equipment
 - i. Auto levels
 - ii. Lasers
 - iii. Digital
 - iv. Total station
 - f. Corners, offsets and elevations
- 6. Traverses
 - a. Terminology
 - i. Northings
 - ii. Eastings
 - iii. Open and Closed
 - b. Latitude and departures
 - i. Calculations
 - 1. Applied trigonometry
 - 2. Corrections
 - ii. Right angles
 - c. Back checking
 - i. Coordinates
 - ii. Angles
 - iii. Distances
 - iv. Applied math
 - d. Closing box
 - i. Calculations
 - ii. Northings
 - iii. Eastings
 - e. Control points
 - i. Identification
 - ii. Accuracy
 - iii. Coordinate elevations
 - iv. Horizontal
 - v. Vertical
 - f. Layout closings
 - q. Application
 - i. Equipment set up
 - ii. Field notes
 - iii. Record keeping

- ATLB-2310: Advanced Instruments
 - iv. Control points
 - v. Calculations

Resources

6

Wesley G. Crawford. Construction Surveying and Layout. 2nd 3d. West Lafayette, IN: Creative Construction Publishing Co., 1995.

Nick Capachi. Excavation Grading. 4th ed. Chicago, II: Craftsman Book Co, 1990.

LIUNA Training and Education Fund. Roadway Construction. Pomfret Center, CT: LIUNA Training and Education Fund, 2007.

LIUNA Training and Education Fund. Construction Referencing Systems. Pomfret Center, CT: LIUNA Training and Education Fund, 2007.

Resources Other

A. Integrated Publishing, Engine Mechanics. Port Richey, FL: Integrated Publishing, 2007. http://www.tpub.com/content/engine/14081_448.htm

Top of page Key: 439