ATLB-2200: SURVEYING TECHNIQUES AND APPLICATION

Cuyahoga Community College

Viewing: ATLB-2200: Surveying Techniques and Application

Board of Trustees:

2003-05-22

Academic Term:

Spring 2019

Subject Code

ATLB - AIT-Construct/Hazard Material

Course Number:

2200

Title:

Surveying Techniques and Application

Catalog Description:

Study of modern surveying techniques, applications, and methodology. Includes equipment, data collection methods, field records, plane transformations, software, and routine procedures.

Credit Hour(s):

3

Lecture Hour(s):

3

Requisites

Prerequisite and Corequisite

Completion of 6 credit hours in ATLB, ATCT, ATBL, or ATCM coursework.

Outcomes

Course Outcome(s):

N/A

Objective(s):

- 1. Organize equipment to match appropriate task.
- 2. Evaluate accuracy of a theodolite set up.
- 3. Formulate correct field data collection procedures and prepare coordinates.
- 4. Design a field record system, using sketches, notes, lines, and numbering systems.
- 5. Assess and evaluate plane transformation adjustments.
- 6. Assess and revise, if required, geodetic coordinates.
- 7. Analyze common data integrity check procedures.
- 8. Diagram network requirements, estimate network performance, and prepare input devices.
- 9. Demonstrate knowledge of digital terrain modeling and GIS software by surveying a site.

Methods of Evaluation:

- 1. Quizzes
- 2. Exams
- 3. Classroom participation
- 4. Demonstration of assigned projects

Course Content Outline:

- 1. Equipment
 - a. Total surveying station
 - b. SOKKIA
 - c. Lietz® Equipment
 - d. Electronic theodolite
 - e. Electronic distance meter
 - f. Portable computer
 - g. Prism reflectors
- 2. Field data collection
 - a. Roles of team
 - b. Communications
 - c. Use of prism pole
 - d. Photographs
 - e. Set up procedures
 - f. Set up coordinates
 - g. Reflector use
- 3. Field records
 - a. Sketches and notes
 - b. Locations and lines
 - c. Numbering system
- 4. Plane transformations
 - a. Adjustments
 - b. Geodetic coordinates
 - c. Use of survey software
 - d. Perceived vs. reliable coordinates
 - e. Data integrity checks (triangulation)
- 5. Equipment
 - a. Performance requirements
 - b. Networking requirements
 - c. Input devices
- 6. Software
 - a. AutoCAD® use
 - b. Digital terrain modeling
 - c. GIS software

Resources

Harbin, Andrew. Land Surveyor Reference Manual. Belmont: Professional Publications, 2001.

Kavanagh, Barry F. Surveying: Principles and Applications. Upper Saddle River, New Jersey, 2003.

Lane, Kenneth. "Fundamental Land Workbook"

Top of page Key: 437