ATCM-2510: FUNDAMENTALS OF CONCRETE JOINTS

Cuyahoga Community College

Viewing: ATCM-2510 : Fundamentals of Concrete Joints

Board of Trustees: March 2020

Academic Term:

Fall 2020

Subject Code ATCM - Appd Indus Tech-Cement Masonry

Course Number:

2510

Title: Fundamentals of Concrete Joints

Catalog Description:

Study of joints in concrete to include types, depths, locations, sealants, maintenance and reason for joints.

Credit Hour(s):

1

Lecture Hour(s):

1

Requisites

Prerequisite and Corequisite

Departmental approval: admission to Cement Mason's Apprenticeship program.

Outcomes

Course Outcome(s): Select the correct type of joint for specific concrete application.

Objective(s):

- 1. Match terms and definitions associated with joints in concrete.
- 2. Match types of basic joints to their purposes.
- 3. Identify types of control (contraction) joints.
- 4. Identify types of isolation (expansion) joints.
- 5. Identify types of construction joints.
- 6. Identify types of decorative joints.
- 7. State reasons for using joints in concrete slabs.

Course Outcome(s):

Select the correct depth of concrete joints for specific types of concrete.

Objective(s):

- 1. Name factors to consider when designing joint system for slabs.
- 2. Explain reasons for different depths of concrete joints.
- 3. Describe ways to achieve different depths.

Course Outcome(s):

Identify the correct location to install concrete joint for specified thickness of concrete.

Objective(s):

- 1. Name factors to consider when designing joint systems for slabs.
- 2. Select variables to consider when deciding joint locations.
- 3. Name factors that affect spacing of joints.

Course Outcome(s):

Select correct sealant and apply to specified job.

Objective(s):

- 1. Describe uses and reasons for sealing joints and how to maintain them.
- 2. List types of materials used in joints.
- 3. List types of equipment used to cut joints and apply sealants.
- 4. Identify types of water stops.

Methods of Evaluation:

- 1. All students will be evaluated during the first two weeks and at mid-term. Progress reports will be issued per procedure. Additional course evaluations and final examination are detailed below:
 - a. Quizzes
 - b. Tests
 - c. Class participation
 - d. Group activity
 - e. Class projects

Course Content Outline:

- 1. Terms and definitions associated with joints in concrete
 - a. Joint
 - b. Tensile stress
 - c. Slab
 - d. Sub-grade
 - e. Expansion material
 - f. Sealant
 - g. Thermoplastic
 - h. Elastomer
 - i. Silicone
 - j. Acrylic
 - k. Polyurethane
 - I. Mastic
- 2. Types of basic joints and their purpose
 - a. Control (contraction)
 - b. Isolation (expansion)
 - c. Construction
 - d. Decorative
- 3. Types of controls
 - a. Tooled control joint
 - b. Sawed control joint
 - c. Control joint with crack inducer anchored in the subgrade
 - d. Sawed contraction joint with steel dowel
 - e. Longitudinal joint
 - f. Skewed joint
- 4. Types of isolation (expansion) joints
 - a. Tooled isolation joint with pre-molded expansion material
 - b. Tooled isolation (expansion) joint with pre-molded expansion material held down for sealant
 - c. Tooled isolation joint with pre-molded expansion material and a capped steel rod
 - d. Finger expansion joint
 - e. Sliding plate expansion joint
- 5. Timing to cut concrete

- a. Tooled or sawed cut joint
- b. Tooled or sawed cut joint with smooth steel rod
- c. Tooled joint with keyway
- d. Tooled joint with keyway and deformed steel rod
- 6. Types of decorative joints
 - a. Tooled decorative joint
 - b. Tooled decorative joint with expansion joint
 - c. Tooled open joint for filling
 - d. Decorative joint with metal spacer
- 7. Reasons for using joints in concrete slabs
 - a. Eliminate random cracks
 - b. Allow expansion and contraction
 - c. Separate adjoining parts at designated locations
 - d. Temporarily separate two successive placements of concrete
 - e. Allow stress relief
 - f. Control transverse and longitudinal cracking
 - g. Divide slabs into suitable spacing
- 8. Factors to consider when designing joint systems for slabs
 - a. Types of cracks that may develop
 - b. How to control cracks
 - c. How to provide adequate load transfer across joints
 - d. How to prevent joints from faulting
 - e. How to provide properly shaped sealant reservoirs
 - f. How to provide adequate sealants to minimize infiltration into the joints
- 9. Variables to consider when deciding joint locations in slabs
 - a. Tensile stress
 - b. Slab size
 - c. Vertical movement
 - d. Horizontal movement
 - e. Variations in slab thickness
 - f. Locations of rigid objects
- 10. Factors that affect spacing of joints in slabs
 - a. Water content of concrete
 - b. Temperature and humidity changes
 - c. Subgrade restraint
 - d. Slab thickness
 - e. Shrinkage potential of the concrete
 - f. Curing environment
 - g. Absence or presence of distributed reinforcement
- 11. Types of equipment used to cut joint sand apply sealants
 - a. Jointer
 - b. Gasoline driven power saw
 - c. Electric hand saw
 - d. Pneumatic powered sealer
 - e. Air powered gun
- 12. Types of materials used in joints
 - a. Compressible
 - b. Wood
 - c. Plastic
 - d. Metal
- 13. Types of sealants used in joints
 - a. Acrylic
 - b. Elastomer
 - c. Lead
 - d. Mastic
 - e. Polyurethane
 - f. Silicone
 - g. Thermoplastic

- 14. Types of depths for different thickness of concrete
 - a. Saw cut depth selection
 - b. Hand tool joint depth selection
 - c. Expansion material depth selection

Resources Other

- 1. 29 CFR. 1926 OSHA Construction Industry Regulations
- 2. Intro to OSHA handouts
- 3. OSHA DVD
- 4. CPWR, OSHA 500, current edition, CPWR, Silver Spring, MD, 2015 · https://www.opcmia.org/training/
- 5. Concrete and Cement Masonry, Developed by the Curriculum and Instructional Materials Center for the Trade and Industrial Education Division Oklahoma Department of Career and Technology Education, 2002
- 6. Euclid Chemicals. www.euclidchemical.com

Top of page

Key: 241